Multiple Structure-View Learning for Graph Classification.
نویسندگان
چکیده
Many applications involve objects containing structure and rich content information, each describing different feature aspects of the object. Graph learning and classification is a common tool for handling such objects. To date, existing graph classification has been limited to the single-graph setting with each object being represented as one graph from a single structure-view. This inherently limits its use to the classification of complicated objects containing complex structures and uncertain labels. In this paper, we advance graph classification to handle multigraph learning for complicated objects from multiple structure views, where each object is represented as a bag containing several graphs and the label is only available for each graph bag but not individual graphs inside the bag. To learn such graph classification models, we propose a multistructure-view bag constrained learning (MSVBL) algorithm, which aims to explore substructure features across multiple structure views for learning. By enabling joint regularization across multiple structure views and enforcing labeling constraints at the bag and graph levels, MSVBL is able to discover the most effective substructure features across all structure views. Experiments and comparisons on real-world data sets validate and demonstrate the superior performance of MSVBL in representing complicated objects as multigraph for classification, e.g., MSVBL outperforms the state-of-the-art multiview graph classification and multiview multi-instance learning approaches.
منابع مشابه
Multi-Graph-View Learning for Complicated Object Classification
In this paper, we propose to represent and classify complicated objects. In order to represent the objects, we propose a multi-graph-view model which uses graphs constructed from multiple graph-views to represent an object. In addition, a bag based multi-graph model is further used to relax labeling by only requiring one label for a bag of graphs, which represent one object. In order to learn c...
متن کاملNetwork Video Online Semi-supervised Classification Algorithm Based on Multiple View Co-training
As information integration based on multiple modal has to problems like complexity calculation process and low classification accuracy towards network video classification algorithm, came up with a network video online semi-supervised classification algorithm based on multiple view co-training. According to extract the features in text view and visual view, to the feature vector in each view, u...
متن کاملClassification of multiple observations by semi-supervised learning
We consider the problem of classification of multiple observations of the same object, possibly under different transformations. We view this problem as a special case of semi-supervised learning where all unlabelled examples belong to the same unknown class. We propose a modified Transductive Support Vector Machine algorithm, which captures the specific nature of the classification problem. We...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملLearning Curve and Industry Structure: Evidences from Iranian Manufacturing Industries
he empirical studies have shown that cost advantages can occur due to economies of scale and economies of learning. However, a few studies have attempted to distinguish between these two effects on reducing costs. This paper is the first attempt on recognizing the impact of learning on reducing the cost with distinguishing the effect of economies of scale in Iran. Therefore, this study aims to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks and learning systems
دوره شماره
صفحات -
تاریخ انتشار 2017